سفارش تبلیغ
صبا ویژن

تکنولوژی ساخت ربات ها

مدیریت دانش

Knowledge management

مدیریت دانش، مدیریت دانایی یا مدیریت اندوخته‌های علمی (Knowledge management - KM) در دسترس قرار دادن نظام‌مند اطلاعات و اندوخته‌های علمی است، به گونه‌ای که به هنگام نیاز در اختیار افرادی که نیازمند آنها هستند، قرار گیرند تا آنها بتوانند کار روزمره خود را با بازدهی بیشتر و موثرتر انجام دهند. مدیریت دانش شامل یک سری استراتژی و راهکاربرای شناسایی، ایجاد، نمایندگی، پخش وتطبیق بینش ها و تجارب در سازمان می باشد.برنامه اجرایی مدیریت اندوخته‌های علمی بر این سه جزء اصلی بنا می‌شود:

  1. فرآیندهایی که این اندوخته‌ها را مدیریت می‌کنند،
  2. ابزار و تمهیداتی که دسترسی به این سرمایه‌های علمی را آسان می‌کنند.

واژه‌گزینی

در زبان فارسی تا به حال اصطلاح «مدیریت دانش» برای Knowledge Management متداول بوده است. در زبان انگلیسی اما تفاوت بسیاری بین Science و Knowledge وجود دارد. Knowledge به تمامی آگاهی‌های بشر به طور کل اطلاق می‌شود در حالیکه Science به فرآیند تولید دانش اطلاق می‌شود. دانش نرم (هنوز) قابل بیان، ساختاردهی، نمایش و مدیریت نیست. تنها دانش سخت را یا دانسته‌های خاص و یا اندوخته‌های علمی را می‌توان مدیریت کرد.

در این متن، به جای استفاده از واژه دانش در مقابل Knowledge، گاهی از واژه دانایی استفاده شده‌است. این در حالی‌ست که واژه دانایی معانی خاص خودش را در حوزه‌های گوناگون دیگر همچون فلسفه، روانشناسی و جامعه‌شناسی نیز داراست. ازآنجا که تحقیقات کاربردی در حوزه مدیریت دانایی نسبتاً جدید است، در این خصوص تعریف خاص و دقیقی که مورد اجماع اکثریت محققین قرار گیرد، هنوز وجود ندارد. آنچه مسلم است آن که می‌توان با آشنایی با تعاریف گوناگون، ابعاد و مصادیق این امر را بیشتر شناخت و آن را بهتر به کار گرفت.

مدیریت دانش و خدمت مرجع

یکی از شاخه‌های فرعی اقتصاد دانش است؛ مدیریت دانش، کاملاً یک مفهوم و روش جدید مدیریت را معرفی می کند. این مفهوم بر تبدیل موهبتهای عقلانی کارکنان و سازماندهی نیروهای سودمند درونی اعضاء کارکنان - نیروی رقابت و ارزش جدید- عمل می کند. مدیریت دانش بر پیوند اطلاعات با اطلاعات، اطلاعات با فعالیت‌ها و اطلاعات با فرد- برای تحقق اشتراک دانش ( از قبیل دانش ضمنی و دانش صریح) توجه دارد. و با مدیریت اطلاعات کاملا متفاوت است. کارکردهای سنتی کتابخانه؛ گردآوری، پردازش، اشاعه، ذخیره سازی، بهره برداری از اطلاعات مدرک به منظور فراهم آوردن خدمت برای جامعه است. در دوره اقتصاد دانش، کتابخانه به عنوان گنجینه دانش بشری، سهیم شدن در پیشرفت دانش و حلقه ارتباطی مهم در زنجیره پیشرفت دانش خواهد بود. در قرن بیست و یکم کتابخانه‌ها بطور اجتناب ناپذیری با موضوع جدید مدیریت دانش مواجه خواهند بود. مدیریت دانش در کتابخانه‌ها می باید بر پژوهش و توسعه دانش، ایجاد پایگاه دانش، مبادله و اشتراک دانش بین کارکنان کتابخانه ( از جمله کاربرانش)، آموزش کارکنان کتابخانه، تسریع پردازش صریح از دانش غیر صریح و تحقق اشتراک آن تمرکز کنند. تعریف مدیریت دانش: مدیریت دانش رویکرد نظام مند یافتن، درک کردن و استفاده از دانش برای دستیابی به اهداف سازمانی است و از طریق کاهش زمان و هزینه? آزمایش و خطا یا تکرار، ایجاد ارزش می‌کند.

تعاریف گوناگون

برای تعریف دانایی باید چندین واژه تعریف شود. ابتدا از داده‌ها صحبت می‌کنیم. داده‌ها منبع حیاتی به شمار می‌روند که با بهره‌برداری صحیح از آنها می‌توان داده‌ها را به اطلاعات بامعنی تبدیل نمود. بدین ترتیب اطلاعات می‌توانند به دانایی و در نتیجه حکمت تبدیل شوند. در واقع اطلاعات، دانایی و حکمت، بیش از مجموعه‌های فوق هستند و به نوعی کل آنها از هم افزایی اجزا تشکیل می‌شوند، نه جمع جبری اجزا.

داده‌ها نقاط بی معنی در فضا و زمان هستند که هیچگونه اشاره‌ای به فضا و زمان ندارند. داده‌ها شبیه رویداد حرف یا کلمه‌ای خارج از زمینه (بدون رابطه) می‌باشند. دانایی مجموعه‌ای از شناخت‌ها و مهارت‌های لازم برای حل مسئله‌است، لذا اگر اطلاعاتی که در دست است بتواند مشکلی را حل کند می‌توان گفت دانایی وجود دارد. ضمن اینکه دانایی باید امکان تبدیل به دستورالعمل اجرائی و عملی شدن را داشته باشد. «نوناکا» بر این اعتقاد است که دانش ضمنی کاملا شخصی بوده، رسمی کردن آن بسیار مشکل است، از این رو انتقال آن به دیگران به آسانی موثر نیست.(مهدی زاده ملاباشی، تورج ، "سنجش جایگاه دانش سازمانی در زنجیره ارزش سازمانهای استراتژی محور"، 1388)

مفهوم مدیریت دانش

مدیریت دانش طیف وسیعی از فعالیتها است که برای مدیریت، مبادله، خلق یا ارتقای سرمایه‌های فکری در سطح کلان به کار می‌رود. مدیریت دانش طراحی هوشمندانه فرایندها، ابزار، ساختار و غیره با قصد افزایش، نوسازی، اشتراک یا بهبود استفاده از دانش است که در هر کدام از سه عنصر سرمایه فکری یعنی ساختاری، انسانی و اجتماعی نمایان می‌شود. مدیریت دانش فرایندی است که به سازمانها کمک می‌کند تا اطلاعات و مهارتهای مهم را که بعنوان حافظه سازمانی محسوب می‌شود و به طور معمول به صورت سازماندهی نشده وجود دارند، شناسایی، انتخاب، سازماندهی و منتشر نمایند. این امر مدیریت سازمانها را برای حل مسائل یادگیری، برنامه ریزی راهبردی و تصمیم گیریهای پویا به صورت کارا و موثر قادر می‌سازد. علل پیدایش مدیریت دانش:

1- دگرگونی مدل کسب و کار صنعتی که سرمایه‌های یک سازمان اساسا سرمایه‌های قابل لمس و مالی بودند(امکانات تولید، ماشین، زمین و غیره) به سمت سازمانهایی که دارایی اصلی آنها غیرقابل لمس بوده و با دانش، خبرگی، توانایی و مدیریت برای خلاق سازی کارکنان آنها گره خورده‌است.

2- افزایش فوق العاده حجم اطلاعات، ذخیره الکترونیکی آن و افزایش دسترسی به اطلاعات به طور کلی ارزش دانش را افزوده است؛ زیرا فقط از طریق دانش است که این اطلاعات ارزش پیدا می‌کند، دانش همچنین ارزش بالایی پیدا می‌کند. زیرا به اقدام نزدیک تر است. اطلاعات به خودی خود تصمیم ایجاد نمی‌کند، بلکه تبدیل اطلاعات به دانش مبتنی بر انسان‌ها است که به تصمیم و بنابراین به اقدام می‌انجامد.

3- تغییر هرم سنی جمعیت و ویژگیهای جمعیت شناختی که فقط در منابع کمی به آن اشاره شده‌است. بسیاری از سازمانها دریافته‌اند که حجم زیادی از دانش مهم آنها در آستانه بازنشستگی است. این آگاهی فزاینده وجود دارد که اگر اندازه گیری و اقدام مناسب انجام نشود، قسمت عمده این دانش و خبرگی حیاتی به سادگی از سازمان خارج می‌شود.

4- تخصصی تر شدن فعالیتها نیز ممکن است خطر از دست رفتن دانش سازمانی و خبرگی به واسطه انتقال یا اخراج کارکنان را بهمراه داشته باشد.

در بدو امر به مدیریت دانش فقط از بعد فن آوری نگاه می‌شد و آن را یک فناوری می‌پنداشتند. اما به تدریج سازمانها دریافتند که برای استفاده واقعی از مهارت کارکنان، چیزی ماورای مدیریت اطلاعات موردنیاز است. انسانها در مقابل بعد فناوری و الکترونیکی، در مرکز توسعه، اجرا و موفقیت مدیریت دانش قرار می‌گیرند و همین عامل انسانی وجه تمایز مدیریت دانش از مفاهیم مشابهی چون مدیریت اطلاعات است.

راهبردهای مدیریت دانش

مدیریت کلان جهت کارآمدی زیرسیستم‌های خود می‌بایست ماهیت، اصول و ابعاد مدیریت دانش را بشناسد. راهبردهایی که ماهیت و توانایی متفاوت مدیران را منعکس می‌نماید عبارتنداز

1- راهبرد دانش بعنوان راهبرد کسب وکار که روشی جامع و با وسعت سازمانی برای مدیریت دانش است، که بیشتر بعنوان یک محصول در نظر گرفته می‌شود.

2- راهبرد مدیریت سرمایه‌های فکری که بر بکارگیری و ارتقای سرمایه‌هایی که از قبل در سازمان وجود دارند، تاکید دارد.

3- راهبرد مسئولیت برای سرمایه دانش فردی که از کارکنان حمایت و آنها را ترغیب می‌کند تا مهارت‌ها و دانش خود را توسعه دهند و دانش خود را با یکدیگر درمیان گذارند.

4- راهبرد خلق دانش که بر نوآوری و آفرینش دانش جدید از طریق واحدهای تحقیق و توسعه تاکید می‌کند.

5- راهبرد انتقال دانش که بعنوان بهنرین فعالیت در بهبود کیفیت امور و کارایی سازمان مورد توجه قرار گرفته‌است.

6- راهبرد دانش مشتری- محور که با هدف درک ارباب رجوع و نیازهای آنها بکار گرفته می‌شود تا خواسته آنها به دقت فراهم شود.

تعریف مدیریت دانایی

تحقیق در ادبیات مدیریت، نشان می‌دهد که هیچ تعریف مورد توافقی از مدیریت دانایی وجود ندارد. تعاریف عمدتاً بر قابلیت‌های سازمانی در خصوص تولید ثروت از دارایی‌های دانایی‌مدار متمرکز هستند. و نقش مدیریت دانایی، اکتساب، جمع‌آوری و استفاده از دانایی فنی سازمانی و درس‌های آموخته شده‌است.

کمی بیش از ده سال از عمر ابداع مفهوم کلی مدیریت دانایی می‌گذرد و در این مدت، تعاریف گوناگونی در این خصوص ارائه گردیده که هر یک ابعادی از این موضوع را نمایش می‌دهند. در ذیل به بیان مهم‌ترین این تعاریف می‌پردازیم:

  1. مدیریت دانایی فرآیند سیستماتیک منسجمی است که ترکیب مناسبی از فناوری های اطلاعاتی و تعامل انسانی را به کار می گیرد تا سرمایه های اطلاعاتی سازمان راشناسایی، مدیریت وتسهیم کند.این دارایی ها شامل پایگاه های اطلاعاتی، اسناد، سیاست ها، و رویه ها می شود. علاوه براین هم شامل دانش آشکار وهم دانش ضمنی کارکنان را دربر میگیردو از روش های متنوع و گسترده برای تصرف، ذخیره سازی و تسهیم دانش در داخل یک سازمان استفاده می کند.1
  2. مدیریت دانایی، کسب دانایی درست برای افراد مناسب در زمان صحیح و مکان مناسب است، به‌گونه‌ای که آنان بتوانند برای دستیابی به اهداف سازمان، بهترین استفاده را از دانایی ببرند.
  3. مدیریت دانایی، بنایی سنجیده، صریح و اصولی برای تجدید و استفاده از دانایی در جهت افزایش تأثیر و بازگشت دانایی مربوط به سرمایه دانایی است.
  4. تعریف مدیریت دانایی، اغلب به حوزه‌های تخصصی نویسندگان مقالات وابسته‌است. مدیریت دانایی را به صورت فرآیند مستمر اطمینان از توسعه تجربی سازمان‌ها در جهت بهبود قابلیت حل مشکلات سازمانی، و حمایت از مزیت رقابتی تعریف می‌کنند. مدیریت دانایی را به عنوان قابلیت خلق ارزش افزوده از طریق دارایی‌های ناملموس سازمانی تعریف می‌کنند.Waltz عقیده دارد که مدیریت دانایی، به محدوده‌های سازمانی، فرآیندها و فناوری‌های اطلاعاتی مختلفی مربوط است که برای دستیابی، خلق و نشر دانایی جهت تحقق مأموریت سازمانی، اهداف کسب و کار و استراتژی‌ها به کار گرفته می‌شوند
  5. فرایند خلق، انتشار وبکارگیری دانش بمنظور دستیابی به اهداف سازمانی.
  6. فلسفه‌ای که شامل مجموعه‌ای از اصول، فرایندها، ساختارهای سازمانی وفن آوریهای بکار گرفته شده که #افراد را بمنظور اشتراک و بکارگیری دانششان جهت مواجهه با اهداف آنها یاری می‌رساند
  7. مدیریت دانایی مجموعه فرایندهایی است که خلق، نشر و کاربری دانایی راکنترل می‌کنند.
  8. مدیریت دانایی، رسمی سازی و دسترسی به تجربه، دانایی و دیدگاههای استادانه را که قابلیتهای جدید، قدرت کارایی بالاتر، تشویق نوآوری و افزایش ارزش مشتری را در پی داشته باشند، هدف قرار می‌دهد.
  9. مدیریت دانایی، دانستن ارزش دانایی، فهم اطلاعات سازمان، استفاده از سیستم‌های تکنولوژی اطلاعات و ارتباطات به منظور حفظ، استفاده و کاربرد دوباره دانایی می‌باشد.
  10. مدیریت دانایی شامل فرایند ترکِب بهینه دانش و اطلاعات در سازمان و ایجاد محیطی مناسب بمنظور تولید، اشتراک و بکارگیری دانش وتربیت نیروهای انسانی خلاق و نوآور است.
  11. مدیریت دانایی، مدیریت اطلاعات و داده به همراه مهار تجربیات ضمنی و نهایی افراد جهت تسهیم، استفاده و توسعه توسط سازمان است که به بهره‌وری بیشتر سازمان منجر می‌گردد.
  12. مدیریت دانایی به مثابه چتری است که مباحث متعدد مربوط به ارزش دانایی به عنوان یک عامل تولیدی را در بر می‌گیرد.
  13. مدیریت دانایی، فرایند کشف، کسب، توسعه و ایجاد، نگهداری، ارزیابی و بکارگیری دانایی مناسب در زمان مناسب توسط فرد مناسب در سازمان است که از طریق ایجاد پیوند میان منابع انسانی، فناوری اطلاعات و ارتباطات و ایجاد ساختاری مناسب برای دستیابی به اهداف سازمانی صورت پذیرد.

دانایی صریح و ضمنی

تحقیقات بسیاری نشان می‌دهد که تنها 20? دانایی آشکار و واضح (Explicit) و 80? مابقی تلویحی و نهفته (Tacit or implicit) است. مفاهیم مربوط به این دو نوع دانایی و صفات و ویژگی های آ نها را در تعاریف زیر بهتر می‌توان دریافت:

دانایی صریح

مقاله? اصلی: دانش صریح

دانایی است که وضوح کافی برای درک آن وجود دارد. دانای صریح، دانایی است که قابل کد شدن است. منظور از کد، هر گونه کد، اعم از کد نوشتاری، گفتاری، رفتاری و... است. مصادیق این نوع از دانایی، کتاب، مقاله، سخنرانی، روشهای مدون سازمانی و سایر مستندات مشابه، می‌باشد

.....

دانایی تلویحی

مقاله? اصلی: دانش ضمنی

چنین دانایی به سه دلیل از شفافیت و وضوح کافی برخوردار نیست:

  1. توانایی تشریح و تعریف دانایی وجود دارد ولی هنوز به عنوان یک دانایی عرضه و معرفی نشده‌است.
  2. توانایی تشریح و تعریف وجود دارد، اما اراده و قصد آن وجود ندارد.
  3. توانایی تشریح دانایی وجود ندارد.

معمولاً باید این نوع دانایی را در درون اذهان انسان‌ها، رویه‌های سازمان، و نیز در اندوخته‌های فرهنگی جوامع گوناگون مستتر یافت. هرچند که مدیریت دانایی ضمنی، به مراتب مشکل‌تر از دانایی آشکار است، اما ارزش آن در کسب مزیت رقابتی در سازمان، بیشتر می‌باشد.

مهندس دانش کیست؟

مهندسان دانش (Knowledge Engineer) نقشی است که در فرآیند مهندسی دانش یا (Knowledge Engineering) تبحر دارد؛ وی می تواند سه فعالیت استخراج، تحلیل و مدلسازی دانش را انجام دهد. این سه فعالیت منجر به تولید یک پایگاه دانش ساخت یافته مبتنی بر مدل های دانش با قابلیت استفاده مجدد می شود که می تواند به عنوان محتوای ورودی در یک سیستم مبتنی بر دانش استفاده شود. در نگاه های غیرحرفه ای تر مهندس دانش به عنوان نقشی برای اجرای برخی فرآیندهای ساده مدیریت دانش تنزل پیدا می کند.

 


[ دوشنبه 91/5/2 ] [ 9:58 صبح ] [ سبا محبی ]

یادگیری ماشینی

به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلٌم و یادگیری پیدا می‌کنند.

اهداف و انگیزه‌ها

هدف یادگیری ماشینی این است که کامپیوتر (در کلی‌ترین مفهوم آن) بتواند به تدریج و با افزایش داده‌ها بازدهی‌ بالاتری در وظیفه? مورد نظر پیدا کند. گسترده? این وظیفه می‌تواند از تشخیص خودکار چهره با دیدن چند نمونه از چهره? مورد نظر تا فراگیری شیوه? گام‌برداری برای روبات‌ای دوپا با دریافت سیگنال پاداش و تنبیه باشد.

طیف پژوهش‌هایی که در یادگیری ماشینی می‌شود گسترده‌است. در سوی نظری‌ی آن پژوهش‌گران بر آن‌اند که روش‌های یادگیری تازه‌ای به وجود بیاورند و امکان‌پذیری و کیفیت یادگیری را برای روش‌های‌شان مطالعه کنند و در سوی دیگر عده‌ای از پژوهش‌گران سعی می‌کنند روش‌های یادگیری ماشینی را بر مسایل تازه‌ای اعمال کنند. البته این طیف گسسته نیست و پژوهش‌های انجام‌شده دارای مولفه‌هایی از هر دو روی‌کرد هستند.

تقسیم‌بندی مسایل

یکی از تقسیم‌بندی‌های متداول در یادگیری ماشینی، تقسیم‌بندی بر اساس نوع داده‌های در اختیار عامل هوش‌مند است. به سناریوی زیر توجه کنید:

فرض کنید به تازگی ربات‌ای سگ‌نما خریده‌اید که می‌تواند توسط دوربین‌ای دنیای خارج را مشاهده کند، به کمک میکروفن‌های‌اش صداها را بشنود، با بلندگوهایی با شما سخن بگوید (گیریم محدود) و چهارپای‌اش را حرکت دهد. هم‌چنین در جعبه? این ربات دستگاه کنترل از راه دوری وجود دارد که می‌توانید انواع مختلف دستورها را به ربات بدهید. در پاراگراف‌های آینده با بعضی از نمونه‌های این دستورات آشنا خواهید شد.

اولین کاری که می‌خواهید بکنید این است که اگر ربات شما را دید خرناسه بکشد اما اگر غریبه‌ای را مشاهده کرد با صدای بلند عوعو کند. فعلاً فرض می‌کنیم که ربات توانایی تولید آن صداها را دارد اما هنوز چهره? شما را یاد نگرفته‌است. پس کاری که می‌کنید این است که جلوی چشم‌های‌اش قرار می‌گیرید و به کمک کنترل از راه دورتان به او دستور می‌دهید که چهره‌ای که جلوی‌اش می‌بیند را با خرناسه‌کشیدن مربوط کند. این‌کار را برای چند زاویه? مختلف از صورت‌تان انجام می‌دهید تا مطمئن باشید که ربات در صورتی که شما را از مثلاً نیم‌رخ ببیند به‌تان عوعو نکند. هم‌چنین شما چند چهره? غریبه نیز به او نشان می‌دهید و چهره? غریبه را با دستور عوعوکردن مشخص می‌کنید. در این حالت شما به کامپیوتر ربات گفته‌اید که چه ورودی‌ای را به چه خروجی‌ای مربوط کند. دقت کنید که هم ورودی و هم خروجی مشخص است و در اصطلاح خروجی برچسب‌دار [1] است. به این شیوه? یادگیری، یادگیری بانظارت [2] می‌گویند.


اینک حالت دیگری را فرض کنید. برخلاف دفعه? پیشین که به ربات‌تان می‌گفتید چه محرک‌ای را به چه خروجی‌ای ربط دهد، این‌بار می‌خواهید ربات خودش چنین چیزی را یاد بگیرد. به این صورت که اگر شما را دید و خرناسه کشید به نحوی به او پاداش دهید (مثلاً به کمک همان کنترل از راه دورتان) و اگر به اشتباه به شما عوعو کرد، او را تنبیه کنید (باز هم با همان کنترل از راه دورتان). در این حالت به ربات نمی‌گویید به ازای هر شرایطی چه کاری مناسب است، بلکه اجازه می‌دهید ربات خود کاوش کند و تنها شما نتیجه? نهایی را تشویق یا تنبیه می‌کنید. به این شیوه? یادگیری، یادگیری تقویتی [3] می‌گویند.

در دو حالت پیش قرار بود ربات ورودی‌ای را به خروجی‌ای مرتبط کند. اما گاهی وقت‌ها تنها می‌خواهیم ربات بتواند تشخیص دهد که آن‌چه می‌بیند (یا می‌شنود و...) را به نوعی به آن‌چه پیش‌تر دیده‌است ربط دهد بدون این‌که به طور مشخص بداند آن‌چیزی که دیده شده‌است چه چیزی است یا این‌که چه کاری در موقع دیدن‌اش باید انجام دهد. ربات هوش‌مند شما باید بتواند بین صندلی و انسان تفاوت قایل شود بی‌آنکه به او بگوییم این نمونه‌ها صندلی‌اند و آن نمونه‌های دیگر انسان. در این‌جا برخلاف یادگیری بانظارت هدف ارتباط ورودی و خروجی نیست، بلکه تنها دسته‌بندی‌ی آن‌ها است. این نوع یادگیری که به آن یادگیری بی نظارت [4] می گویند بسیار مهم است چون دنیای ربات پر از ورودی‌هایی است که کس‌ای برچسب‌ای به آن‌ها اختصاص نداده اما به وضوح جزیی از یک دسته هستند.

یادگیری بی‌نظارت را می‌توان به صورت عمل کاهش بعد [5] در نظر گرفت.

از آن‌جا که شما سرتان شلوغ است، در نتیجه در روز فقط می‌توانید مدت محدودی با ربات‌تان بازی کنید و به او چیزها را نشان دهید و نام‌شان را بگویید (برچسب‌گذاری کنید). اما ربات در طول روز روشن است و داده‌های بسیاری را دریافت می‌کند. در این‌جا ربات می‌تواند هم به خودی‌ی خود و بدون نظارت یاد بگیرد و هم این‌که هنگامی که شما او را راه‌نمایی می‌کنید، سعی کند از آن تجارب شخصی‌اش استفاده کند و از آموزش شما بهره? بیش‌تری ببرد. ترکیب‌ای که عامل هوش‌مند هم از داده‌های بدون برچسب و هم از داده‌های با برچسب استفاده می‌کند به یادگیری نیمه نظارتی [6] می‌گویند.

یادگیری بانظارت

نوشتار اصلی: یادگیری بانظارت

یادگیری تحت نظارت، یک روش عمومی در یادگیری ماشین است که در آن به یک سیستم، مجموعه ای از جفت‌های ورودی - خروجی ارائه شده و سیستم تلاش می‌کند تا تابعی از ورودی به خروجی را فرا گیرد. یادگیری تحت نظارت نیازمند تعدادی داده ورودی به منظور آموزش سیستم است. با این حال رده‌ای از مسائل وجود دارند که خروجی مناسب که یک سیستم یادگیری تحت نظارت نیازمند آن است، برای آن‌ها موجود نیست. این نوع از مسائل چندان قابل جوابگویی با استفاده از یادگیری تحت نظارت نیستند. یادگیری تقویتی مدلی برای مسائلی از این قبیل فراهم می‌آورد. در یادگیری تقویتی[7]، سیستم تلاش می‌کند تا تقابلات خود با یک محیط پویا را از طریق آزمون و خطا بهینه نماید. یادگیری تقویتی مسئله‌ای است که یک عامل که می‌بایست رفتار خود را از طریق تعاملات آزمون و خطا با یک محیط پویا فرا گیرد، با آن مواجه است. در یادگیری تقویتی هیچ نوع زوج ورودی- خروجی ارائه نمی‌شود. به جای آن، پس از اتخاذ یک عمل، حالت بعدی و پاداش بلافصل به عامل ارائه می‌شود. هدف اولیه برنامه‌ریزی عامل‌ها با استفاده از تنبیه و تشویق است بدون آنکه ذکری از چگونگی انجام وظیفه آن‌ها شود.


[ دوشنبه 91/5/2 ] [ 9:56 صبح ] [ سبا محبی ]

هوش مصنوعی

 

این صفحه درباره? دانش هوش مصنوعی است. برای اطلاعات در مورد فیلمی به همین نام به هوش مصنوعی (فیلم) مراجعه کنید.

هوش مصنوعی یا هوش ماشینی را باید عرصه? پهناور تلاقی و ملاقات بسیاری از دانش‌ها، علوم، و فنون قدیم و جدید دانست. ریشه‌ها و ایده‌های اصلی آن را باید در فلسفه، زبان‌شناسی، ریاضیات، روان‌شناسی، نورولوژی، و فیزیولوژی نشان گرفت و شاخه‌ها، فروع، و کاربردهای گوناگون و فراوان آن را در علوم رایانه، علوم مهندسی، علوم زیست‌شناسی و پزشکی، علوم ارتباطات و زمینه‌های بسیار دیگر.

هوش مصنوعی به هوشی که یک ماشین از خود نشان می‌دهد و یا به دانشی در کامپیوتر که سعی در ایجاد آن دارد گفته می‌شود. بیشتر نوشته‌ها و مقاله‌های مربوط به هوش مصنوعی آن را «دانش شناخت و طراحی عامل‌های هوشمند»[2] تعریف کرده‌اند. یک عامل هوشمند سیستمی است که با شناخت محیط اطراف خود، شانس موفقیت خود را بالا می‌برد.[3] جان مکارتی که واژه هوش مصنوعی را در سال 1956 استفاده نمود، آن را «دانش و مهندسی ساخت ماشین‌های هوشمند» تعریف کرده‌است. تحقیقات و جستجوهایی انجام شده برای رسیدن به ساخت چنین ماشین‌هایی مرتبط با بسیاری از رشته‌های علمی دیگر است، مانند علوم رایانه، روان‌شناسی، فلسفه، عصب شناسی، علوم ادراکی، تئوری کنترل، احتمالات، بهینه سازی و منطق.

تاریخچه

علوم الکترونیک، هوش مصنوعی توسط فلاسفه و ریاضی‌دانانی نظیر بول که اقدام به ارائه? قوانین و نظریه‌هایی در باب منطق نمودند، مطرح شده بود. با اختراع رایانه‌های الکترونیکی در سال 1943، هوش مصنوعی دانشمندان را به چالشی بزرگ فراخواند. در بادی امر، چنین به‌نظر می‌رسید که این فناوری در نهایت قادر به شبیه‌سازی رفتارهای هوشمندانه خواهد بود.

با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با دیده تردید به کارآمدی آن می‌نگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگر سامانه‌های هوشمند در صنایع گوناگون هستیم.

نام هوش مصنوعی در سال 1965 میلادی به عنوان یک دانش جدید ابداع گردید. البته فعالیت درزمینه این علم از سال 1960 میلادی شروع شده‌بود.(مرجع1)

بیشتر کارهای پژوهشی اولیه در هوش مصنوعی بر روی انجام ماشینی بازی‌ها و نیز اثبات قضیه‌های ریاضی با کمک رایانه‌ها بود. در آغاز چنین به نظر می‌آمد که رایانه‌ها قادر خواهند بود چنین اموری را تنها با بهره گرفتن از تعداد بسیار زیادی کشف و جستجو برای مسیرهای حل مسئله و سپس انتخاب بهترین آن‌ها به انجام رسانند.


این اصطلاح (هوش مصنوعی) برای اولین بار توسط جان مکارتی (John McCorthy) که از آن به‌عنوان پدر «علم و دانش تولید ماشینهای هوشمند» یاد می‌شود استفاده شد.آقای جان مکارتی مخترع یکی از زبانهای برنامه نویسی هوش مصنوعی به نام (lisp) نیز هستند. با این عنوان می‌توان به هویت هوشمند یک ابزار مصنوعی اشاره کرد. (ساخته? دست بشر، غیر طبیعی، مصنوعی)

حال آنکه AI به عنوان یک اصطلاح عمومی پذیرفته شده که شامل محاسبات هوشمندانه و ترکیبی (مرکب از مواد مصنوعی) است.

از اصطلاح strong and weak AI می‌توان تا حدودی برای معرفی رده‌بندی سیستم‌ها استفاده کرد. AI‌ها در رشته‌های مشترکی چون علم کامپیوتر، روانشناسی و فلسفه مورد مطالعه قرار می‌گیرند، که مطابق آن باعث ایجاد یک رفتار هوشمندانه، یادگیری و سازش می‌شود و معمولاً نوع پیشرفته? آن در ماشینها و کامپیوترها استفاده می‌شود. زبان های برنامه نویسی هوش مصنوعی lisp ,Prolog, clips , VP-Expert می باشد.

آزمون تورینگ

آزمون تورینگ [4] آزمونی است که توسط آلن تورینگ در سال 1950 در نوشته‌ای به نام «محاسبات ماشینی و هوشمندی» مطرح شد. در این آزمون شرایطی فراهم می‌شود که شخصی با ماشین تعامل برقرار کند و پرسش‌های کافی برای بررسی هوشمندی او بپرسد. چنانچه در پایان آزمایش نتواند تعیین کند که با انسان در تعامل بوده است یا با ماشین، تست تورینگ با موفقیت انجام شده است. تا کنون هیچ ماشینی از این آزمون با موفقیت بیرون نیامده است. کوشش این آزمون برای تشخیص درستی هوشمندی یک سیستم است که سعی در شبیه سازی انسان دارد.

تعریف و طبیعت هوش مصنوعی

هنوز تعریف دقیقی که مورد قبول همه? دانشمندان این علم باشد برای هوش مصنوعی ارائه نشده‌است، و این امر، به هیچ وجه مایه? تعجّب نیست. چرا که مقوله? مادر و اساسی‌تر از آن، یعنی خود هوش هم هنوز بطور همه‌جانبه و فراگیر تن به تعریف نداده‌است. در واقع، می‌توان نسل‌هایی از دانشمندان را سراغ گرفت که تمام دوران زندگی خود را صرف مطالعه و تلاش در راه یافتن جوابی به این سؤال عمده نموده‌اند که: هوش چیست؟

اما اکثر تعریف‌هایی که در این زمینه ارایه شده‌اند بر پایه یکی از 4 باور زیر قرار می‌گیرند:

  1. سیستم‌هایی که به طور منطقی فکر می‌کنند
  2. سیستم‌هایی که به طور منطقی عمل می‌کنند
  3. سیستم‌هایی که مانند انسان فکر می‌کنند
  4. سیستم‌هایی که مانند انسان عمل می‌کنند(مرجع1)

شاید بتوان هوش مصنوعی را این گونه توصیف کرد: «هوش مصنوعی عبارت است از مطالعه این که چگونه کامپیوترها را می‌توان وادار به کارهایی کرد که در حال حاضر انسان‌ها آنها را بهتر انجام می‌دهند»(مرجع2).

محققین هوش مصنوعی علاقه‌مند به تولید ماشینی هستند که دستورات مورد نیاز را به صورت هوشمندانه انجام دهد. به عنوان مثال قابلیت کنترل، برنامه‌ریزی و زمان‌بندی، توانایی تشخیص جواب به سوال مصرف کننده، دست نویس‌ها، زبان شناسی، سخنرانی و شناسایی چهره را داشته باشد. مطالعه بر روی یک AI دارد به یک رشته? مهندسی تبدیل می‌شود که کانون مشروط است بر حل مشکلات زندگی واقعی، علم معدن کاری، نرم‌افزارهای کاربردی، استراتژی بازیها مثل بازی شطرنج و بازیهای ویدئویی یکی از بزرگ‌ترین مشکلات (سختی‌ها) با AIها، قوه? درک آنها است.

تاحدی دستگاه‌های تولیدشده می‌توانند شگفت‌انگیز باشند، اما کارشناسان هوش مصنوعی ادعا می‌کنند که ماشینهای هوشمند ساخته‌شده دارای درک واقعی و حقیقی نیستند.


--مشاهده رفتاری هوشمندانه و صحیح از یک سیستم را نمی توان دلیلی کافی بر هوشمندی آن سیستم تصورکرد بلکه بایستی به ساختار داخلی و مکانیزم انتخاب راه توسط سیستم توجه شود که آیا مبتنی بر آگاهی خود سیستم است یا نه و این آگاهی زمانی میسر خواهد بود که سیستم خود قابلیت تحلیل اطلاعات در یافتی از محیط را داشته باشد و بتواند رابطه‌های معنی داری بین علت و معلول ما بین اتفاقات محیطی ایجاد کند و در واقع قادر به ایجاد مدلی هر چند غیر دقیق بر پایه مشاهدات خود از محیط باشد سپس سیستم ایده ارزشمندی از نظرگاه خود تولید بکند و بعنوان خواسته و هدفی سعی در پیاده سازی آن بکند یعنی در پی پیدا کردن و اتصال ابزارهای مناسبی به آن هدف باشد تا بتواند آلگوریتم عملیاتی برای برآورد آن خواسته تولید نماید.

فلسفه? هوش مصنوعی

نوشتار اصلی: فلسفه هوش مصنوعی

بطور کلی ماهیت وجودی هوش به مفهوم جمع آوری اطلاعات، استقرا و تحلیل تجربیات به منظور رسیدن به دانش و یا ارایه تصمیم است. در واقع هوش به مفهوم به کارگیری تجربه به منظور حل مسائل دریافت شده تلقی می‌شود. هوش مصنوعی علم و مهندسی ایجاد ماشینهایی با هوش با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و یا حیوانی و نهایتاً دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی است.

در مقایسه هوش مصنوعی با هوش انسانی می‌توان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسایل در جهت قضاوت و اخذ تصمیم است در حالی که هوش مصنوعی مبتنی بر قوانین و رویه‌هایی از قبل تعبیه شده بر روی کامپیوتر است. در نتیجه علی رغم وجود کامپیوترهای بسیار کارا و قوی در عصر حاضر ما هنوز قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوشهای مصنوعی نبوده‌ایم.

بطور کلّی، هوش مصنوعی را می‌توان از زوایای متفاوتی مورد بررسی و مطالعه قرار داد. مابین هوش مصنوعی به عنوان یک هدف، هوش مصنوعی به عنوان یک رشته تحصیلی دانشگاهی، و یا هوش مصنوعی به عنوان مجموعه? فنون و راه کارهایی که توسط مراکز علمی مختلف و صنایع گوناگون تنظیم و توسعه یافته‌است باید تفاوت قائل بود.

اتاق چینی

اتاق چینی بحثی است که توسط «جان سیرل» در 1980 مطرح شد در این راستا که یک ماشین سمبل گرا هرگز نمی‌تواند دارای ویژگی‌هایی مانند «مغز» و یا «فهمیدن» باشد، صرف نظر از اینکه چقدر از خود هوشمندی نشان دهد.

مدیریت پیچیدگی

ایجاد و ابداع فنون و تکنیک‌های لازم برای مدیریّت پیچیدگی را باید به عنوان هسته? بنیادین تلاش‌های علمی و پژوهشی گذشته، حال، و آینده، در تمامی زمینه‌های علوم رایانه، و به ویژه، در هوش مصنوعی معرّفی کرد. شیوه‌ها و تکنیک‌های هوش مصنوعی، در واقع، برای حلّ آن دسته از مسائل به وجود آمده‌است که به طور سهل و آسان توسط برنامه‌نویسی تابعی (Functional programming)، یا شیوه‌های ریاضی قابل حلّ نبوده‌اند.

در بسیاری از موارد، با پوشانیدن و پنهان ساختن جزئیّات فاقد اهمّیّت است که بر پیچیدگی فائق می‌آییم و می‌توانیم بر روی بخش‌هایی از مسئله متمرکز شویم که مهم‌تر است. تلاش اصلی در واقع، ایجاد و دستیابی به لایه‌ها و ترازهای بالاتر از هوشمندی تجرید را نشانه می‌رود، تا آنجا که، سرانجام برنامه‌های کامپیوتری درست در همان سطحی کار خواهند کرد که خود انسان‌ها رسیده‌اند.

به یاری پژوهش‌های گسترده دانشمندان علوم مرتبط، هوش مصنوعی تاکنون راه بسیاری پیموده‌است. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبانها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این دانش کمک زیادی کرده‌است. یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.

برای نمونه روباتیی هوشمند که بتواند اعضای بدن خود را به حرکت درآورد، این روبات نسبت به این حرکت خود آگاه بوده و با آزمون و خطا، دامنه حرکت خود را گسترش می‌دهد و با هر حرکت موفقیت آمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی می‌دود و یا به روشی برای جابجا شدن دست می‌یابد، که سازندگانش برای او متصور نبوده‌اند.

هر چند نمونه بالا ممکن است کمی آرمانی به نظر برسد، ولی به هیچ عنوان دور از دسترس نیست. دانشمندان، عموماً برای تولید چنین ماشینهایی، از وجود مدلهای زنده‌ای که در طبیعت وجود، به ویژه آدمی نیز سود برده‌اند.

هوش مصنوعی اکنون در خدمت توسعه علوم رایانه نیز است. زبانهای برنامه نویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن ساخته اند، پایگاه‌های داده‌ای پیشرفته، موتورهای جستجو، و بسیاری نرم‌افزارها و ماشینها از نتایج پژوهش‌هایی در راستای هوش مصنوعی بوده‌اند.

تکنیک‌ها وزبان‌های برنامه نویسی هوش مصنوعی

عملکرد اولیه برنامه نویسی هوش مصنوعی ایجاد ساختار کنترلی مورد لزوم برای محاسبه سمبولیک است زبانهای برنامه نویسی LISP,PROLOG علاوه بر اینکه از مهمترین زبانهای مورد استفاده در هوش مصنوعی هستند خصوصیات نحوی ومعنایی انها باعث شده که انها شیوه‌ها و راه حل‌های قوی برای حل مسئله ارایه کنند. تاثیر قابل توجه این زبانها بر روی توسعه AI از جمله توانایی‌های انها بعنوان «ابزارهای فکرکردن» است. در حقیقت همانطور که هوش مصنوعی مراحل رشد خود را طی می‌کند زبانهای LISP ,PROLOG بیشتر مطرح می‌شوند این زبانها کار خود را در محدوده توسعه سیستم‌های AIدر صنعت ودانشگاه‌ها دنبال می‌کنند و طبیعتاً اطلاعات در مورد این زبانها بعنوان بخشی از مهارت هر برنامه نویس AIاست.

  • PROLOG: یک زبان برنامه نویسی منطقی است. یک برنامه منطقی دارای یک سری ویژگیهای قانون ومنطق است. در حقیقت خود این نام از برنامه نویسی PROدر LOGIC می‌آید. در این زبان یک مفسر برنامه را بر اساس یک منطق می‌نویسد.ایده استفاده توصیفی محاسبه? اولیه برای بیان خصوصیات حل مسئله یکی از محوریتهای مشارکت PROLOG است که برای علم کامپیوتر بطور کلی و بطور اخص برای زبان برنامه نویسی هوشمند مورد استفاده قرار می‌گیرند.
  • LISP: اصولاً LISP یک زبان کامل است که دارای عملکردها و لیست‌های لازمه برای توصیف عملکردهای جدید، تشخیص تناسب و ارزیابی معانی است. LISP به برنامه نویس قدرت کامل برای اتصال به ساختارهای اطلاعاتی را می‌دهد گر چه LISP یکی از قدیمی‌ترین ترین زبانهای محاسباتی است که هنوز فعال است ولی دقت کافی در برنامه نویسی وطراحی توسعه باعث شده که این یک زبان برنامه نویسی فعال باقی بماند.

در حقیقت این مدل برنامه نویسی طوری موثر بوده‌است که تعدادی از دیگر زبانها براساس عملکرد برنامه نویسی آن بنا شده‌اند: مثل FP ،ML ،SCHEME

یکی از مهمترین برنامه‌های مرتبط با LISP برنامه SCHEME است که یک تفکر دوباره در باره زبان در آن وجود دارد که بوسیله توسعه AI وبرای آموزش واصول علم کامپیوتر مورد استفاده قرار می‌گیرد.

عامل‌های هوشمند

مقاله? اصلی: عامل‌های هوشمند

عامل‌ها (Agents) قادر به شناسایی الگوها، و تصمیم گیری بر اساس قوانین فکر کردن خوداند. قوانین و چگونگی فکر کردن هر عامل در راستای دستیابی به هدفش، تعریف می‌شود. این سیستم‌ها بر اساس قوانین خاص خود فکر کرده و کار خودرا به درستی انجام می‌دهند. پس عاقلانه رفتار می‌کنند، هر چند الزاما مانند انسان فکر نمی‌کنند.

در بحث هوشمندی اصطلاح PEAS سرنام واژه های "کارایی (Performance)" ، "محیط (Environment)" ، "اقدام گر (Agent)" و "حسگر (Sensor)" است.

سیستم‌های خبره

مقاله? اصلی: سیستم‌های خبره

سیستم‌های خبره زمینه‌ای پرکاربرد در هوش مصنوعی و مهندسی دانش است که با توجّه به نیاز روز افزون جوامع بر اتخاذ راه حل‌ها و تصمیمات سریع در مواردی که دانش‌های پیچیده و چندگانه? انسانی مورد نیاز است، بر اهمیت نقش آنها افزوده هم می‌شود. سیستم‌های خبره به حل مسائلی می‌پردازند که به طور معمول نیازمند تخصّص‌های کاردانان و متخصّصان انسانی‌ست. به منظور توانایی بر حل مسائل در چنین سطحی (ترازی)، دسترسی هرچه بیشتر اینگونه سامانه‌ها به دانش موجود در آن زمینه خاص ضروری می‌گردد.

 


[ دوشنبه 91/5/2 ] [ 9:55 صبح ] [ سبا محبی ]

روبوکاپ

 

 

روبوکاپ (RoboCup) عنوان مسابقاتی بین‌المللی در زمینه دانش روباتیک و هوش مصنوعی است که بصورت سالیانه توسط فدراسیون بین‌المللی RoboCup برگزار می‌شود. از آنجا که نام RoboCup برگرفته از کلمات «Robot Soccer» (مسابقه فوتبال) و «World Cup» (جام جهانی) است.

هدف روبوکاپ

هدف نمادین ربوکاپ پیروزی تیم فوتبال روباتهای انسان نما در سال 2050 (میلادی) در رقابت با برترین تیم فوتبال همان سال است ولی هدف آن به طور کل توسعه دانش روباتیک و هوش مصنوعی است.

تاریخچه روبوکاپ

ایده برگزاری ربوکاپ برای اولین بار در سال 1992 توسط پروفسور آلن مک ورث از دانشگاه British Columbia کانادا در مقاله‌ای تحت عنوان روباتهای بینا مطرح شد که این مقاله در سال 1993 در کتابی تحت عنوان «Computer Vision: System, Theory, and Applications» منتشر گردید. در همین زمان گروهی از محققان کشور ژاپن به بررسی امکانپذیری برگزاری مسابقه فوتبال روباتها پرداختند که این بررسی‌ها منجر به تأسیس رقابتهای Robot J-League (که بعد به RoboCup تفییر نام داد) توسط پروفسور مینورو آسادا، یاسو کنیوشی و هیرواکی کیتانو شد. رقابتهای روبوکاپ در سال 1996 بصورت رسمی آغاز بکار کرد. لیست زیر بیانگر تاریخ و محل برگزاری مسابقات روبوکاپ از بدو تأسیس آن می‌باشد.

 

تعداد تیم‌های شرکت کننده

تعداد کشورها

تعداد شرکت کنندگان

2012 مکزیکو سیتی - مکزیک

     

2011 استانبول - ترکیه

451

40

2691

2010 سنگاپور

500

40

3000

2009 گراز - اتریش

407

43

2472

2008 سوژو - چین

400

35

 

2007 آتلانتا (جورجیاتک) - آمریکا

300

37

1966

2006 برِمِن آلمان

440

35

 

2005 اوزاکا - ژاپن

419

35

 

2004 لیسبون - پرتقال

345

37

 

2003 پادوا - ایتالیا

238

35

 

2002 فوکوکا - ژاپن و بوسان - کره

188

29

 

2001 سیاتل - آمریکا

141

22

 

2000 ملبورن - استرالیا

110

19

 

1999 استوکهلم - سوئد

85

23

 

1998 پاریس - فرانسه

63

19

 

1997 ناگویا - ژاپن (اولین دوره رسمی)

38

11

 

1996 اوزاکا - ژاپن (غیر رسمی)

8

-

 

رشته‌های مسابقات روبوکاپ

  • رقابت های فوتبال (Soccer)
    • لیگ ربات های اندازه کوچک (Small Size)
    • لیگ ربات های اندازه متوسط (Middle Size)
    • لیگ ربات های استاندارد (Standard Platform)
    • لیگ ربات های انسان نما (Humanoid)
    • لیگ شبیه سازی (Soccer Simulation)
      • شبیه سازی دو بعدی فوتبال (2D Soccer Simulation)
      • شبیه سازی سه بعدی فوتبال (3D Soccer Simulation)
      • واقعیت ترکیبی (Mixed Reality)
  • رقابت های امداد و نجات (Rescue)
    • لیگ ربات های امدادگر (Rescue Robot)
    • لیگ شبیه سازی امداد و نجات (Rescue Simulation)
  • لیگ ربات های خانگی (@Home)
  • مسابقات نوجوانان (زیر 18 سال) (Junior)
    • رقابتهای فوتبال نوجوانان (Soccer)
    • رقابتهای رقص نوجوانان (Dance)
    • رقابتهای امداد و نجات نوجوانان (Rescue)
    • رقابت عمومی نوجوانان (General)

[ دوشنبه 91/5/2 ] [ 9:54 صبح ] [ سبا محبی ]

ربات زیرآبی

 

کاربرد ربات در دریا 

 

منابع و صنایع دریایی نفش و تأثیر مهمی در زندگی انسان‌ها دارند. به همین دلیل مطالعه و بررسی بسیاری از مسائل مهندسی، زیست‌شناسی، تجاری و نظامی مرتبط با دریا، همواره مورد توجه محققان بوده‌است. با توسعه و گسترش صنایع دریایی و علوم مرتبط با دریا، امروزه برای انجام بسیاری از کاربردهای کشف و استخراج منابع زیرآبی، بازرسی و جمع‌آوری اطلاعات زیست محیطی و تحقیقاتی و نیز نصب، تعمیر و نگهداری سازه‌های ساحلی و دریایی، به‌کارگیری تکنولوژیِ خاص و جدیدی برای پاسخ‌گویی به نیازهای روزافزون پیش آمده، ضروری می‌نماید. استفاده از وسائل و ابزارآلات مهندسی که قابلیت به کارگیری در اعماق آب را دارند و کاربری‌های متنوع در فضا و بستر دریا را ممکن می‌سازند، چنان در سال‌های اخیر توسعه و گسترش یافته که توانایی بشر را در بررسی، تحقیق و کار در اعماق دریا، به شدت متحول نموده‌است. در بسیاری از صنایع مختلف و گوناگون، استفاده از تجهیزاتی که بتوان آن‌ها را بدون حضور مستقیم نیروی انسانی و از راه دور هدایت و کنترل نمود، کاربردهایی فراوانی یافته‌اند و در بسیاری از موارد به جزء جدانشدنیِ کاربردهای تجاری و صنعتی بدل گشته‌اند، به گونه‌ای که انجام بسیاری از پروژه‌های مهندسی و تحقیقاتی بدون آن‌ها امکان‌پذیر نیست. این تجهیزات شامل ربات‌ها و بازوهای مکانیکی هستند که قابلیت انجام عملیات از پیش برنامه‌ریزی شده و نیز اجرای فرامین لحظه‌ای کاربر را به نحوی مناسب و دقیق، دارند. در صنایع زیردریایی بنا به دلایلی که گفته شد، استفاده از تکنولوژی رباتیک در سال‌های اخیر توسعه و گسترش فراوانی یافته و در بسیاری از شاخه‌های علوم و مهندسیِ دریا نقش مهم و اساسی پیدا نموده‌اند. بهبود و افزایش کارایی این تکنولوژی نیازمند افزایش مطالعات مهندسی بر روی تمامی انواع و اجزای سیستم‌ها و ربات‌های زیرآبی، جهت انجام عملیات پیچیده‌تر و فرامین متنوع‌تر است. به این منظور حجم عظیمی از مطالعات و تحقیقات مهندسی در سراسر جهان و در رشته‌ها و تخصص‌های متفاوت بر این موضوع متمرکز شده‌اند.

تعریف ربات زیرآبی(ROV)

یک وسیله? نقلیه? پویش‌گرِ قابل کنترل از راه دور (ROV) زیردریایی، «ربات زیرآبی است که به اپراتور این امکان را می‌دهد که این وسیله را در اعماق آب کنترل و هدایت کند و از طریق اعمال فرامین عملیات مورد نظر را از طریق تجهیزاتِ ربات، انجام دهد»، که اختصارا «ربات زیرآبی» خوانده خواهد شد. ربات‌های زیرآبی در اندازه‌ها و ابعاد متفاوت و با گستره? متنوعی از تکنولوژی‌ها و امکانات در سال‌های اخیر طراحی، ساخت، آزمایش و به‌کارگیری شده و حتی در برخی موارد به تولید صنعتی رسیده‌اند. انواع این ربات‌ها از نمونه‌های کوچک و ساده‌ای که صرفاً مجهز به دروبین فیلم برداری کوچکی هستند تا گونه‌های پیشرفته و بسیار پیچیده‌ای که در اعماق بیش از شش هزار متری دریا امکان انجام عملکردهای متنوع و متعددی را دارند، شامل می‌شوند. اجزای ربات زیرآبی که توسط کابل ارتباطی به اپراتور واقع در سطح دریا متصل است، عبارت‌اند از سیستم هدایتی جهت کنترل ربات، سیستم رانش، سیستم به آب‌انداختن، منابع تامین قدرت و کابل ارتباطی که توان لازم جهت عملکرد پروانه‌ها و نیز دستورات و سیگنال‌های کنترلی را به ربات و داده‌های تولید شده توسط حسگرها را به اپراتور در سطح دریا منتقل می‌کنند. در اغلب موارد این کابل شامل غلاف مقاومی است که آن را در برابر بارهای وارده و نیز برخوردهای احتمالی با اجسام واقع در زیر آب و پارگی و خرابی ناشی از آن، محافظت می‌کند. ربات‌های زیرآبی، می‌توانند دارای تجهیزات متفاوتی باشند که از دوربین تلویزیونی کوچک، که جهت مشاهدات ساده به کار می‌روند تا مجموعه‌های پیچیده‌ای از ابزارآلات مانند بازوهای مکانیکی ماهر متنوع و قدرت‌مند، دوربین‌های تلویزیونی و ویدئویی و دیگر ابزار و وسایل پیشرفته را در بر می‌گیرد.

 

 

یک ربات زیرآبی تحقیقاتی

امروزه ربات‌های زیرآبی پیشرفته‌ای ساخته شده‌اند که بدون استفاده از کابل، امکان هدایت‌شان در اعماق دریا وجود دارد.این گونه از ربات‌های زیرآبی را «ربات خودکار زیرآبی(AUV)» می‌نامند که جهت جستجو در اعماق اقیانوس و انجام مطالعات اقیانوس‌شناسی و نیز مصارف نظامی، کاربردهای فراوانی دارند. در عین حال که اغلب تکنولوژی طراحی و ساخت ربات‌های زیرآبی با قابلیت‌ها و توانایی‌های متنوع، بسیار گران قیمت و پرهزینه‌است اما در سال‌های اخیر تلاش‌هایی نیز برای ساخت ربات‌های زیرآبی با صرف هزینه? پایین صورت پذیرفته‌است.

== کاربردهای ربات‌های زیرآبی ==

امروزه ربات‌های زیرآبی بخش جداناشدنی صنایع و علوم دریایی هستند. در حال حاضر این ربات‌ها بخش بسیار مهم و قابل اعتمادی از صنایع ساحلی و فراساحلی می‌باشند که توسط نهادهای تجاری، دولتی، نظامی و دانشگاهی مورد استفاده قرار می‌گیرند.ربات‌های زیرآبی مدرن، امروزه طیف متنوعی از وظایف محوله را، از بازرسیِ محیط‌های خطرناک درون راکتور هسته‌ای گرفته تا تعمیر تأسیسات *پیچیده? زیردریاییِ صنایع نفت و گاز، به انجام می‌رسانند. عموماً ربات‌های زیرآبی جهت انجام ماموریت‌های زیر به کار می‌روند: مشاهدات زیردریایی: جهت کمک و حصول اطمینان از ایمنی و سلامت غواص، مطالعات متنوع و جمع‌آوری اطلاعات مربوط به محیط زیست و شیلات، دریاشناسی و اقیانوس‌شناسی،

  • بازرسی سازه‌ها و سکوی دریایی و ساحلی: جهت بازرسی عینی از عملکرد وسایل و ابزارآلات و یا بازبینی اثرات خوردگی، رسوب، محل وقوع ترک‌ها، تخمین بیولوژیک رسوبات و غیره،
  • بازرسی از خطوط لوله: دنبال‌کردن خطوط لوله? زیردریایی جهت کنترل و بازبینی خطوط از نظر عدم وجود هرگونه نشتی و دیگر عیوب خطوط لوله و اطمینان از نصب صحیح آن‌ها،
  • نقشه‌برداری: انجام نقشه‌برداری‌های عینی و آکوستیک، که قبل از نصب سازه‌های ساحلی، سکوهای فراساحلی، خطوط لوله‌، کابل‌ها و هر گونه عملیات نصب سازه‌های دریایی، باید انجام گردند،
  • کمک در انجام عملیات حفاری: انجام بازرسی‌های عینی، بازبینی هم‌زمان عملیات نصب، به‌کارگیری و تعمیر و نگهداری صنایع حفاری و استخراج در بستر دریا،
  • کمک به انجام عملیات ساخت: کمک به هدایت و کنترل بازوهای مکانیکی و دیگر ابزارهای برشکاری، انتقال قدرت و نصب و ساخت در بستر دریا حین عملیات حفاری، ساخت و برپاکردن سازه‌های دریایی، نصب انواع وسائل و ابزارآلات اندازه‌گیری و نمونه‌برداری.
  • پاک‌سازی قطعات مخروبه: کمک به انجام ماموریت‌های ایمن‌سازی و پاک‌سازی فضا و بستر دریا در پیرامون اسکله‌ها، سکوها و تأسیسات ساحلی و فراساحلی که می‌توانند بستر دریا را به انبار بزرگی از مواد و مصالح مخروبه و مستعمل تبدیل کنند و ایمنی محیط کار و سلامت محیط زیست را به خطر بیاندازند،
  • تجهیزات زیردریایی: مشارکت در روند ساخت، کارکرد، بازرسی و تعمیر تجهیزات زیردریایی به خصوص در اعماق زیاد، نگهداری از سکوهای بارگذاری شده، برج‌های روشنایی و لنگرها،
  • کشف و نجات اجساد و اجسام زیر دریا: جستجو، شناسایی و انجام عملیاتی نظیر نجات اضطراری وسائل زیرآبی غرق شده، بالاآوردن تجهیزات گم شده در بستر دریا و نیز کشف اجساد و اجسام به جای مانده از سوانح هوایی یا دریایی،
  • جایگزینی غواصان: مشارکت در بسیاری از ماموریت‌هایی که انجام آن به سبب وجود خطر بسیاز زیاد و یا حجم و گستره? وسیع، برای غواصان مشکل یا غیرممکن باشد.

موارد بالا فقط کاربردهای دریایی رایج را شامل می‌گردند در حالی که عملکرد این ربات‌ها به موارد بالا محدود نبوده و کاربردهای فراوان و متنوع دیگری را نیز شامل می‌گردند که در ادامه مورد بحث قرار خواهند گرفت.

کاربردهای تجاری و فراساحلی

از آن‌جا که درصد بالایی از منابع نفت و گاز جهان در دریاواقع هستند، استفاده از ربات‌های زیرآبی در این زمینه کاربردهای فراوانی دارند، چنان که می‌توان گفت مهم‌ترین و وسیع‌ترین کاربرد ربات‌های زیرآبی در سراسر جهان، در صنایع نفت و گاز جهت انجام عملیات اکتشاف و استخراج نفت و گاز است. از اواسط دهه هفتاد تکنولوژی ربات‌های زیرآبی کمک‌های وسیعی به عملیات جستجوی منابع انرژی زیرزمینی در دریا نموده‌اند. در حال حاضر چنین ماموریت‌هایی توسط ربات‌های زیرآبی با قدرت و اطمینان‌پذیری بالا در اعماق بیش از 2500 متری انجام می‌شوند. امروزه عملیات حفاری جهت استخراج نفت و گاز در آب‌های کم‌عمق گرفته تا اعماق بسیار زیاد دریا - 1500 متری - صورت می‌پذیرند که ربات‌های زیرآبی امکان پشتیبانی از کلیه? اجزای حفاری را داشته و در تمامی مراحل نصب و ساخت، بازرسی و نگهداری و نیز تعمیر و دیگر فعالیت‌های مربوطه به کار می‌روند. بیش از شصت درصد ربات‌های زیرآبی جهان در صنعت نفت و گاز فعالیت می‌کنند و اغلب در عملیات حفاری مشارکت می‌کنند. سیستم‌های به کار گرفته شده در این پروژه‌ها قابلیت کار در عمق 30 متری تا 3000 متری را دارند. لذا امکان استفاده از تمامی انواع ربات‌های زیرآبی موجود، در این صنعت وجود دارد. علاوه بر صنایع نفت و گاز، ربات‌های زیرآبی در نصب و نگهداری سکوها، سیستم‌های زیردریایی، نصب، حمل و نگهداری و به کاربری خطوط جریانی، سیم‌ها و کابل‌های‌های خطوط مخابراتی نیز نقش مهمی دارند. ربات‌های مشاهده‌گر نوعا در آب‌های کم عمق یا بسترهای پوشیده از درخت و گیاه کاربرد دارند. ربات‌های سنگین و قدرت‌مند اغلب در آب‌های عمیق‌تر، مناطقی با جریان‌های زیرآبی قوی و زیاد به خصوص هنگامی‌که استفاده از تکنولوژی و ابزارهای نوین و پیشرفته، بازوهای مکانیکی ماهر و انتقال سیال یا حمل و نگهداری بار مد نظر باشد، به‌کار می‌روند. مشارکت در عملیات حفاری، نصب و ساخت تجهیزات صنعتی در اعماق دریا نیاز به اپراتور ماهر و دانش مهندسی پیشرفته در طراحی و ساخت ربات و نیز هدایت و ناوبری‌ِ ربات دارد.

کاربردهای نظامی

کاربرد نظامی ربات‌های زیرآبی در آغاز به انجام عملیات جستجو و بازیابی وسایل و تسلیحات غرق شده، محدود می‌گشت. به مرور با افزایش سرمایه‌گذاری بر روی این تکنولوژی در صنعت نظامی، قابلیت‌های ربات‌های زیرآبی در این زمینه نیز افزایش جالب توجهی یافت. یکی از مهم‌ترین موارد کاربرد ربات‌های زیرآبی استفاده از آن‌ها در چیدمان و نیز خنثی‌سازی مین‌های جنگی است، که اغلب انجام آن با استفاده از شناورهای سطحی و یا غواصان سخت، مشکل و خطرناک است. استفاده از ربات‌های زیرآبی می‌تواند نقش مهمی در طراحی استراتژی‌های جنگی و تدافعی و تامین امنیت مرزهای ساحلی در زمان صلح و نیز کشف و خنثی‌سازی محدوده? آب‌های سرزمینی، از مین‌ها و هم‌چنین تسلیحات و ادوات مستعمل به جای مانده از دوران جنگ، داشته باشد. با توجه به گسترش ربات‌های زیرآبیِ خودکار، به نظر می‌رسد استفاده از این تکنولوژی در صنایع نظامی بسیار وسیع و مطلوب باشد. چرا که در کاربردهای نظامی اغلب مطلوب است ربات در گستره? وسیع حرکت کند و از موانع متعدد گذر کند و لذا مطلوب است که ربات بدون کابل بوده و مجهز به تکنولوژی‌های پیشرفته? کنترل و هدایت از راه دور باشند و ضمنا بتوانند به صورت خودکار مسیر مطلوب را یافته و نیازی به منبع انرژی خارج از ربات نباشد.

کاربردهای علمی و تحقیقاتی

ضعف تکنولوژی، محققان و دانشمندان را از تحقیق در اعماق دریاها و اقیانوس‌ها برای سال‌ها و تا اوایل سال 1870 محروم نگاه داشته بود. امروزه روش‌های متعددی برای تحقیق در زیر و بستر دریا فراهم آمده‌است که از سبدهای قابل یدک‌کشی توسط کشتی تا زیردریایی‌های نفربر، از آن جمله‌اند. اما ورود تکنولوژی ساخت و تولید ربات‌های زیرآبی مجهز به دوربین‌ها و بازوهای مکانیکی ماهر و قدرت‌مند به این عرصه، امکانات قابل توجهی در اختیار محققان در زمینه‌های زیست‌شناسی و اقیانوس‌شناسی قرار داد. توانایی چنین ربات‌هایی در تهیه فیلم و عکس‌های با کیفیت بسیار بالا از مکان‌ها و محل‌هایی در اعماق دریا که پیش از این دست یافتن به آن غیر ممکن بوده‌است، کمک منحصر به فردی به محققان این عرصه نموده‌است. نمونه‌های فراوانی از این گونه ربات‌های زیرآبی جهت انجام امور پژوهشی و تحقیقاتی در دانشگاه‌ها و مراکز تحقیقاتی و پژوهشی دنیا طراحی و ساخته شده‌اند که در فعالیت‌هایی نظیر:

  • پیمایش میدانی و مشاهدات عینی اعماق و بستر دریا جهت مطالعات زیست‌شناسی و بوم شناسی،
  • نمونه‌برداری از اعماق و بستر دریا،
  • مطالعه و بررسی انواع ماهیان و آبزیان،
  • مطالعه و بررسی وضعیت زیست محیطی جانوران و گیاهان دریایی،

مشارکت می‌کنند.

 


[ دوشنبه 91/5/2 ] [ 9:51 صبح ] [ سبا محبی ]
........

درباره وبلاگ

آرشیو مطالب
امکانات وب